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Abstract

Motion planning is a crucial component in autonomous driving. State-of-the-art motion plan-

ners are trained on meticulously curated datasets, which are not only expensive to annotate but

also insufficient in capturing rarely seen critical scenarios. Failing to account for such scenarios

poses a significant risk to motion planners and may lead to incidents during testing. An intuitive

solution is to manually compose such scenarios by programming and executing a simulator (e.g.,

CARLA). However, this approach incurs substantial human costs. Motivated by this, we propose

an inexpensive method for generating diverse critical traffic scenarios to train more robust motion

planners. First, we represent traffic scenarios as scripts, which are then used by the simulator to

generate traffic scenarios. Next, we develop a method that accepts user-specified text descrip-

tions, which a Large Language Model (LLM) translates into scripts using in-context learning. The

output scripts are sent to the simulator that produces the corresponding traffic scenarios. As our

method can generate abundant safety-critical traffic scenarios, we use them as synthetic train-

ing data for motion planners. To demonstrate the value of generated scenarios, we train existing

motion planners on our synthetic data, real-world datasets, and a combination of both. Our ex-

periments show that motion planners trainedwith our data significantly outperform those trained

solely on real-world data, showing the usefulness of our synthetic data and the effectiveness of

our data generation method.

Motivations

High cost of collecting real-world data and limitations of current datasets.

Risk of incidents due to unaccounted safety-critical scenarios.

Substantial human costs of manually composing scenarios.

Proposal

An inexpensive method for generating diverse critical traffic scenarios.

Representing traffic scenarios as scripts for simulators.

Using LLMs to translate user-specified text descriptions into scripts.

Generating abundant safety-critical traffic scenarios for synthetic training data.

Collecting data from the physics-based simulator to augment/replace real-world datasets.

Contributions

Scenario generation has traditionally been manual and labor-intensive. However, advance-

ments in LLMs allow for efficient AI-driven generation of specific traffic scenarios. This study

builds on prior research and makes the following key contributions:

1. A universal, general, and cost-effective framework, “AutoSceneGen”, is proposed to automat-

ically enhance the heterogeneity of traffic scenarios through scenario descriptions, thereby

accelerating the simulation and testing process.

2. AutoSceneGen leverages in-context learning (ICL) of LLMs, eliminating the need for training

or fine-tuning generative models for scenario generation tasks.

3. The scenarios generated by AutoSceneGen were demonstrated to produce better datasets,

leading to improved training results for motion planners.

4. AutoSceneGen automatically categorizes scenarios by their descriptions, removing the need

for downstream annotation and aiding motion planner training in open-world environments.

5. AutoSceneGen is modular with dynamic components, enabling easy replacement of its gen-

erative model and simulation engine for scenario generation and data collection.

AutoSceneGen Framework

AutoSceneGen consists of key components for processing scenario descriptions, which can be

provided by the user or extracted from images using a vision-language model. A filtering process

ensures simulator compatibility by replacing incompatible terms with appropriate alternatives.
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Figure 1. Architecture Overview. It begins with the user inputting a scenario description, which is managed by the

Exception Handler to block adversarial or irrelevant inputs, ensuring the framework operates within scope and pre-

vents downstream issues. The Filter processes the description, replacing simulator-incompatible terms with those

aligned to the simulator’s documented APIs. The filtered description (Desc.’) is combined with pre-constructed ICL

exemplars, which can be zero-shot, one-shot, or few-shot in category, depending on the LLM’s familiarity with the

simulator’s APIs and the complexity of the scenario. The LLM generates a response containing scenario configu-

rations, often accompanied by explanations and comments. The Validator verifies each API call for compatibility,

replacing unsupported terms with suitable alternatives (e.g., replacing “storm,” unsupported in CARLA, with “rain”) or

ignoring them to prevent errors. This ensures all calls align with the simulator’s capabilities, enabling execution of

the final configuration file. The simulator runs the scenario, with the final step depicting the interaction between the

real world and the virtual environment, while data collection can take place either inside the simulator or externally.

Results

This study addresses the challenge by leveraging LLMs’ ICL capabilities to generate tailored con-

figurations for rare scenarios, streamlining the ideation and scenario creation processes. Figure 2

shows a rare scenario generated with this approach.

Figure 2. Images captured at four distinct timestamps and locations, corresponding to input scenario description: “In

downtown area, during a drizzly noon, there are vehicles malfunctioning windshield wipers and some of the vehicles’

doors are open. Some vehicles exhibit negligent driving behavior, compromising visibility in wet conditions. There

are 10 pedestrians on the road, with 50% of the pedestrian running. No one was hurt and no accident happened

since all the vehicles except the malfunctioning one obeyed the traffic rules.”

(a) Epoch 127 (b) Epoch 147 (c) Epoch 160 (d) Epoch 200

Figure 3. The comparison of all metrics between the datasets collected via AutoSceneGen (Blue), ApolloScapes (Or-

ange; A.S.), and the combination of the two datasets (Green) across different epochs is shown. While the dataset

collected purely from AutoSceneGen outperforms A.S. in some epochs, such as epoch 127, the combination of Au-

toSceneGen and A.S. demonstrates better overall results. Due to the distinct distribution of traffic participants in

the two datasets, Figures (b), (c), and (d) show sharper peaks for FDE-vehicle and ADE-vehicle. However, the com-

bination of the two datasets achieves reasonable values overall. In this experiment, A.S. has a total of 3,917 frames,

AutoSceneGen has 17,919 frames, and the combined AutoSceneGen + A.S. has 27,605 frames.

Comparisons

Without modifying the original trajectory prediction network, our dataset achieved superior

results with reduced displacement error for each traffic participant type, as shown in Table 1.

In various epochs, the dataset collected from AutoSceneGen demonstrated the highest accu-

racy in trajectory prediction, as illustrated in Figure 3-(a). Moreover, combining our dataset

with ApolloScapes improved overall performance, enhancing all trajectory prediction metrics

by incorporating diverse scenarios and extensive data, as depicted in Figures 3(b), (c), and (d).

Dataset Method TAE ADEv ADEp ADEb TFE FDEv FDEp FDEb

A.S. TrafficPredict 0.085 0.080 0.091 0.083 0.141 0.131 0.150 0.139

A.S. + Ours TrafficPredict 0.053 0.085 0.058 0.065 0.076 0.114 0.092 0.094

Ours TrafficPredict 0.033 0.088 0.020 0.047 0.058 0.135 0.037 0.077

TRAF TraPHic 5.63 N/A N/A N/A 9.91 N/A N/A N/A

A.S.(Reproduced) TraPHic 5.10 3.62 1.02 4.49 2.81 6.73 1.88 8.44

A.S. + Ours TraPHic 1.30 1.69 0.42 0.90 2.10 2.82 0.67 1.39

Ours TraPHic 0.27 0.14 0.19 0.44 0.40 0.21 0.30 0.62

Table 1. The comparison results of the ApolloScapes dataset, collected from AutoSceneGen (Ours), and the two

datasets combined are presented. The term “ApolloScapes Dataset” is abbreviated as “A.S.” in the table. Lower

metrics indicate better performance. We generated 17,919 examples; the official training set of A.S. contains 94

examples. We used the original method proposed in TrafficPredict to train the planner. For TRAF and another

evaluation, we used TraPHic. While the results are not as good as the results under TrafficPredict, under the

method TraPHic there are still huge improvements thanks to the substitution of TRAF and ApolloScapes to the

dataset collected via AutoSceneGen. “ADE” stands for Average Displacement Error, and “FDE” stands for Final

Displacement Error, with suffixes “v,” “b,” and “p” representing vehicle, bicycle, and pedestrian, respectively.

Dataset Method ADE FDE

NGSIM Pihgu 0.88 1.96

Ours Pihgu 7.98 15.43

NGSIM train-set + Ours Pihgu 0.84 1.87

ETH/UCY Pihgu 1.10 2.24

Ours Pihgu 1.48 2.70

ETH/UCY train-set + Ours Pihgu 0.79 1.50

VIRAT/ActEV Pihgu 14.11 27.96

Ours Pihgu 16.05 31.09

VIRAT/ActEV + Ours Pihgu 15.32 29.65

Table 2. The comparison results of the NGSIM dataset, the dataset collected from AutoSceneGen (ours), and the

combination of the two datasets are shown. When replacing the NGSIM dataset with ours, the ADE and FDE

values are much higher (worse) than when using the original NGSIM dataset. However, when we combine the

two datasets—NGSIM and ours—the ADE and FDE decrease and outperform the results obtained from using

the NGSIM dataset alone, indicating that the original NGSIM dataset is augmented by our dataset collected via

AutoSceneGen. A similar observation was made with the ETH/UCY dataset. [Insights are detailed in the paper.]
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